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A Real Event

• Your car was stolen and parked somewhere.

• The only information that you can still have is
the car App

• for remote engine start & lock

• that offers a relative distance to the owner’s phone

• What would you do to find the car?

Mazda Mobile 
Start
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WHERE Am I?

Who Are You,
Where Are You Going, 

Where Have You Been?
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Localization: A long history…
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“Localization”
≈ GPS

1959Transit

1974NAVSTAR

1983Civilian use

1994Worldwide use FREE

2000Final deactivation of 
selective availability

2004A-GPS

201431 satellites / 3m

1999
Benefo
n Esc

2001

In-car 
navigation

2015

GPS III

1978-85

Block I 
Satellite

1957
Sputnik

1989-94

Block II satellite
Hand-held RX
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Indoor Positioning

Localization ≈ GPS ≈ Maps
Sorry

GPS signals NOT found!

7



Indoor Positioning

Robot Navigation VR Gaming Sports Analytics

Mobiles & Wearables Robots Drones
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Device-based vs. Device-free
• Two different contexts

• Device-based: A user carries a certain device in order to be located
• Device-free: A user can be located without carrying/wearing any

devices

• Our focus: Device-based approaches
• GPS
• Smartphone localization
• Robot/asset tracking

• …

• Device-free approaches are more related to contactless
wireless sensing (last topic).
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Indoor Positioning: 30+ years
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An Idea Indoor “GPS”

• Despite 30+ years of worldwide efforts, we still do not have a
practical solution today that scales to the world.

• Why?

• Among many reasons
• No worldwide “GPS” – infrastructure

• Complex indoor environments

• Higher accuracy requirement than outdoors
• ~1 m needed to differentiate neighboring rooms, aisles in supermarkets…
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An Idea Indoor “GPS”
• Accurate

• ~1 m

• Robust
• Environmental changes/dynamics

• Scalable
• Worldwide buildings and global users

• Easy-to-install
• Infrastructure-free

• Coverage

• Sustainable
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Example Architecture

13



Three Mainstream Approaches

• Metrics
• Accuracy: ~1 m

• Cost: hardware, installation, deployment, maintenance, etc

• Coverage: How large space can be supported?

• Scalability: How many users/buildings to support?

Angulation / Lateration Location matching
Dead-Reckoning
Inertial Tracking
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Early Systems (1)

Active Badge

Designed and prototyped between 1989 and 1992

By Andy Hopper etc, Olivetti Research Lab (ORL)

Signals: infra-red signals

Beacons: Pre-deployed networked infra-red receivers
Tags: small active badge

Technology: landmarks

Accuracy: room scale
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Early Systems (2)

Bat Ultrasonic Location System

Designed and prototyped between 1997 and 2001

By Andy Hopper etc,  AT&T Cambridge Lab

Signals: short pulse of ultrasonic

Beacons: pre-deployed networked ultrasonic 
sensors

Tags: ultrasonic transmitter (a Bat)

Technology: triangulation

Accuracy: centimeter
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Early Systems (3)

Cricket

Designed and prototyped between 2000 and 2006

By Hari Balakrishnan etc, CSAIL MIT

Signals: ultrasonic signals & RF signals

Beacons: Ceiling-mounted, transmitted concurrent 
RF and ultrasonic signals

Listeners: small active badge

Technology: landmarks

Accuracy: centimeter / room-level granularity
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Trilateration/Triangulation

• The approach of GPS
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Trilateration/Multilateration

• Given
• 𝑅𝑖 = 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1,2,3,⋯𝑁

• 𝑑𝑖: distance from 𝑋 to 𝑅𝑖

• Solve 𝑋 = 𝑥, 𝑦 : ෠𝑋 = argmin
𝑋

σ𝑖=1
𝑁 | 𝑋 − 𝑅𝑖 |

• A Solution using Least Squares Method

d1

d2

d3

R1
R2

R3

X

൞
𝑥 − 𝑥1

2 + 𝑦 − 𝑦1
2 = 𝑑1

2

⋮
𝑥 − 𝑥𝑁

2 + 𝑦 − 𝑦𝑁
2 = 𝑑𝑁

2
𝐴𝑋 = 𝑏 ෠𝑋 = 𝐴𝑇𝐴 −1𝐴𝑇𝑏
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Trilateration/Multilateration

• Ranging is the key
• What infrastructure/technology to use?

• What ranging approach to use?

• Recall ranging

d1

d2

d3

R1
R2

R3

X

𝑑𝑟𝑒𝑠 =
𝑐

𝐵

Range Resolution depends on the bandwidth

Time = t1

Absorption
+

Reflection

t2

echo

d

d=c(t2-t1)/2

20



Acoustic Ranging

BeepBeep: a high accuracy acoustic ranging system using COTS mobile devices, SenSys’07

Device A Device B

Distance = d

Time = t1 Time = t2
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Root causes of inaccuracy

• Clock synchronization errors

• Sending/receiving uncertainties
• 1 ms error in time = 34 cm error in distance

• 1 cm ranging accuracy requires 30us timing accuracy

time

...

t0 = wall_clock();

write(sound_dev, signal);

...

software issuing command

sound leaves

speaker

unknown delays 

(software, system, 

driver, hardware, …) 

?

...

read(sound_dev, signal);

t1 = wall_clock();

...

software aware of arrival

sound

reaches mic

unknown delays 

(hardware, interrupt, 

driver, scheduling, …) 

?

Device A Device B

Distance = d

Time = t1 Time = t2
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Acoustic Ranging: BeepBeep
Device A Device B

DAB=|ETOAA-ETOAB|/2

A’s recording B’s recording

ETOAA ETOAB

1. Device A emits a beep while 
both recording

2. Device B emits another beep 
while both continue recording

3. Both devices detect TOA of the 
two beeps and obtain respective 
ETOAs

4. Exchange ETOAs and calculate 
the distance
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Timeline
Device A Device B
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Timeline
Device A Device B

1st  Beep
tA0
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Timeline
Device A Device B

1st  Beep
tA0

tB1

tA1
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Timeline
Device A Device B

1st  Beep
tA0

tB1

tA1

2nd  Beep
tB2
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Timeline
Device A Device B

1st  Beep
tA0

tB1

tA1

2nd  Beep
tB2

tA3

tB3
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Timeline
Device A Device B

1st  Beep
tA0

tB1

tA1

2nd  Beep
tB2

tA3

tB3

ETOAA
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Timeline
Device A Device B

1st  Beep
tA0

tB1

tA1

2nd  Beep
tB2

tA3

tB3

ETOAA

ETOAB
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tA3

2nd  Beep

tB3

tB2

1st  Beep

tB1

tA0

tA1

ETOAA

ETOAB

P

P

Timeline
Device A Device B
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tA3

2nd  Beep

tB3

tB2

1st  Beep

tB1

tA0

tA1

ETOAA

ETOAB

P

Q

Timeline
Device A Device B

P
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tA3

2nd  Beep

tB3

tB2

1st  Beep

tB1

tA0

tA1

ETOAA

ETOAB

P

Q

|ETOAA-ETOAB|

= (P+Q+P) – (Q)

= 2P

Timeline
Device A Device B

P

dB,A+dA,B= c·[(tA3-tA1)-(tB3-tB1)] +dA,A+dB,B

              = c·(ETOAA-ETOAB)+dA,A +dB,B
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WiFi RSSI-based Ranging
• The spread in RSS for a given distance is huge, making inversion to 

estimate the distance from RSS ill posed

• No path-loss model, no matter how complex, can overcome this problem.

• Using CSI helps, but does not solve the problem.
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RSSI-based Ranging
• There are many path loss models!

• Log-Distance Path Loss

• 𝑃𝑑: RSS in decibel measured at a 
distance of d (in meters)

• 𝑃𝑑0: The received power (RSS) at a 
distance 𝑑0 (usually takes the value of 1 
meter), assumed as a constant empirical 
value (e.g., -40 dB) given Tx power.

• 𝛾: path loss exponent
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WiFi RSSI-based Ranging

RANGING

Estimate distance from

channel measurements

RSSI: Signal strengths 

decays logarithmically over 

distance

ToF: Time of Flight

AoA: Angle of Arrival
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WiFi RSSI-based Ranging

RANGING

Estimate distance from

channel measurements

RSSI: Signal strengths 

decays logarithmically over 

distance

ToF: Time of Flight

AoA: Angle of Arrival
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WiFi Ranging: FTM

• Wi-Fi Fine Timing Measurement (FTM)
• IEEE 802.11mc FTM RTT

The RTT is calculated for n FTM messages:
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More problems about Trileteration

• Ranging accuracy is only one concern

• Hardware cost

• High cost for installation and maintenance

• Prior knowledge of the anchors

• Where are the ”indoor satellites”?
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Fingerprinting

The first fingerprint-based system

Leading a new epoch / 2000

Paramvir / Victor Bahl

RADAR HORUS
Improved upon RADAR

/ 2004

Moustafa Youssef

First RFID Fingerprinting System

/ 2004

LANDMARC

Yunhao Liu
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What fingerprints?

• WiFi: One of the most ubiquitous signatures

• RFID

• Acoustics/sound

• Geomagnetism

• FM signals

• Light

Spatial Distinction

Temporal Invariance
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Geo-Magnetism Fingerprinting

Indoor Location Sensing Using Geo-Magnetism, MobiSys’11

Database: <mag_x_i, mag_y_i, mag_z_i, Location_i>

Observation: <mag_x, mag_y, mag_z>

Find the ‘i’ (or a sequence) for which RMS 

difference between the observation and 

the stored magnetic value is minimum.
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AP 2

AP 1

AP 4

AP 3

Unique 
features of 

signals

WiFi Fingerprinting

• Existing WiFi ≈ Infrastructure free
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WiFi Fingerprinting

• Existing WiFi ≈ Infrastructure free
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WiFi Fingerprinting

• Offline phase: Building the fingerprint database

• Online phase: Handle location query and find the best match
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How to build fingerprint database?

• RSS as unique feature of a physical location

• Site Survey: Build fingerprint database of RSS-location records

• Estimate location by finding best-matched item

Floor plan Site survey Radio map Localization
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Problems of Site Survey

• Time-consuming and labor-intensive
• Leverage mobile crowdsourcing

• Environmental changes (Recall RSS-based human detection?)

• Need to recalibrate periodically

Smartphones based Crowdsourcing for Indoor Localization, ACM MobiCom’12/IEEE TMC’15
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Limitations of Fingerprinting
• Limited Accuracy

• Spatial ambiguity: RSS doesn’t provide enough resolution
• Temporal variability: RSS varies significantly over time

• Low hardware cost but still high deployment cost
• Time-consuming and labor-intensive
• Relieved by crowdsourcing

• Still one of the most practical approaches, used partially in
Google/Apple maps

• Made (more) practical and usable nowadays with big data and AI
models
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CSI Fingerprinting

• Achieving 1cm accuracy & robust to environment changes!

• TRRS as distance measure
• Time-Reversal Resonating Strength

• Cosine similarity?

• Problem?

H1: CSI at location 1
H1: CSI at location 2
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Inertial Tracking
• Basic tasks

• Distance/displacement estimation

• Direction estimation

• Integrate distance and direction over time to track locations

• Pros
• Infrastructure-free

• Scalable

• Cons
• Accumulative errors

• Difficult to infer a user’s heading direction (different from device orientation)

• Unconstrained user behavior for pedestrian tracking
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Inertial Tracking

• a.k.a Dead-reckoning

• PDR: Pedestrian Dead-Reckoning

• Truly infrastructure-free

Open Problem in mobile computing
“No one has the solution…But people making progress”
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Inertial Tracking

• Can we solve tracking with these inputs?
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Inertial Tracking

• One possible solution: Direct integration

Accel. = 

𝑎𝑥
𝑎𝑦
𝑎𝑧

 is measured in local reference frame, 

and needs to convert into the global reference frame.

• Big Problem: Acc drifts, gyro drifts, significantly
• Huge (!!!) accumulative errors of time
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Pedestrian Dead-Reckoning

• Any good idea to get a better/reasonable estimate of distance?

Step Count: 63 steps
Double Integration : -551m

(using magnitude)
?????????

Ground Truth

Predicted Result

Direction also drifts significantly over time
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3D Orientation

• The 3D rotation needed for coordinate transformation
• [Frontwards, rightwards, upwards] → [Northwards, eastwards, vertical]
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3D Orientation

• Main opportunities
• Constant gravity

• Magnetic north

• Key idea: What rotation is needed such that
• Gravity is exactly in the downward direction

• North is exactly in the frontward direction
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3D Orientation

• For static objects, can rely mostly on gravity + North
• Does not work well for moving objects

• Any motion will affect the reported acceleration and pollute the gravity
estimate

• Another idea: Integrate angular velocity from gyroscope for
continuous estimation

• Gyro also drifts, only useful in short time scales
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3D Orientation: Sensor Fusion

• If static: Rely mostly on gravity +
North

• If moving: Rely mostly on gyro 
integration

• Gravity as the main reference 
anchor

(More) Accurate 3D 
orientation all the time!
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3D Orientation

• What if the object is not often static?

• Many different sensor fusion algorithms
• No good solution today…

• Count on you to solve the problem...
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Pedestrian Dead-Reckoning

• Any good idea to get a better/reasonable estimate of distance?

Step Count: 63 steps
Double Integration : -551m

(using magnitude)
?????????
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Pedestrian Dead-Reckoning

• Any good idea to get a better/reasonable estimate of distance?

Step Count: 63 steps
Double Integration : -551m

(using magnitude)
?????????

61

Step counting instead of
double integration

(# of steps) x (stride length)

How to get stride length?
- Fixed value
- Estimation given height
- Dynamically estimated



Visual Inertial Tracking

62

• Visual-Inertial Odometry (VIO)



Neural Inertial Tracking

• Using deep neural networks to learn
• The distance, velocity, and/or positions

• And thus predict the moving trajectories
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Tracking Results
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NeurIT: Time-Frequency Block-recurrent Transformer

65

Xinzhe Zheng, Sijie Ji, Yipeng Pan, Kaiwen Zhang, Chenshu Wu, “NeurIT: Pushing the Limit of Neural Inertial Tracking for Indoor Robotic IoT”, 2024.



IMU

Inertial Measurement Unit Recap

Accelerometer
Measuring the linear 

acceleration

Gyroscope Calculating the 

angular velocity

Magnetometer
Reporting the 

absolute orientation

Significant limitations in precise and robust motion estimation:
- Accelerometer: Noisy readings, step counting for distance

- Gyroscope: Accumulative errors due to integration

- Magnetometer: Environment interference, cannot infer heading direction

Moving Distance

Heading Direction

Rotating Angle

M
o

ti
o

n
 

P
ar

a
m

e
te

rs
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RIM: RF-based Inertial Measurement

• Turns COTS WiFi radio into precise IMU that measures motion 
parameters at centimeter accuracy: 

• Moving distance, Heading direction, Rotating angle

COTS WiFi receiver

Access Point (AP)
• One single arbitrarily placed AP
• No additional infrastructure
• Not require large bandwidth or many 

phased antennas
• No need of a priori calibration
• Works for LOS & NLOS

67

Wu, C., Zhang, F., Fan, Y., & Liu, K. R.. RF-based inertial measurement. ACM SIGCOMM 2019.



Virtual Antenna Alignment

d

t0 t1 t2 t3 t4 tk-3 tk-2 tk-1 tk Ԧ𝑣
1 11 antenna

1D  array
d

Ԧ𝑣

Δd

1 2

t0 t1 t2 t3 t4 tk-3 tk-2 tk-1 tk

t0 t1 t2 t3 t4 tk-3 tk-2 tk-1 tk

1

2Δd

Δt

Multipath Profiles 
Virtual Antennas!

Aligned virtual antennas
ො𝑣 =

Δ𝑑

Δ𝑡

መ𝑑 = න
𝑡0

𝑡𝑘

ො𝑣𝑑𝑡

Moving distance
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Super-Resolution Virtual Antenna Alignment

How to accurately pinpoint the space-time point that two virtual 
antennas are aligned with each other, at sub-centimeter resolution?

Δ𝑑 = 𝜆/2

e.g., 1cm error = ~ 50% error in speed 

= 30◦ heading error = 22◦ rotation error 
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Time-Reversal Principle

70

TX

RX

TX RX

t t

TX

RX

TX RX

t t

Time Reversal 
Transmission

Time Reversal 
Resonating Effect
TR Resonating Strength (TRRS)

Wu, Z. H., Han, Y., Chen, Y., & Liu, K. J. R.. A time-reversal paradigm for indoor positioning system. IEEE TVT 2015.
Zhang, F., Chen, C., Wang, B., Lai, H. Q., Han, Y., & Liu, K. J. R.. WiBall: A time-reversal focusing ball method for decimeter-accuracy indoor tracking. IEEE IOTJ, 2018



Time Reversal Resonating Strength (TRRS)
• Time-Reversal Focusing Effect: The received CSI, when combined with its 

time-reversed and conjugated counterpart, will add coherently at the intended location 
but incoherently at any unintended location, creating a spatial focusing effect

d

Ԧ𝑣

2

𝐻1

𝐻2

TRRS Resolution
• The peak value as high as possible
• The peak width as narrow as possible
• The above two properties as robust as possible

TRRS
(CIR)

(CFR)
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Virtual Massive Antennas

• Overcome distortions in TRRS: Leveraging consecutive 
multipath profiles as massive virtual antennas

𝑉 virtual antennas

d

Ԧ𝑣

2
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Tracking Alignment Delay

• Continuously track alignment delay via Dynamic Programming

Peak value (negative) Cost function
73



True Distance = 10.27 m Estimated Distance = 10.22 m

A WiFi Ruler with RIM

74

Measure the perimeter of a big round table

TRRS Matrix

Speed



Results
• 1 single AP, 7 different locations

• Both LOS and NLOS (40m away through 
multiple walls)

• 200Hz sampling rate on a 40MHz channel in 
the 5GHz band

75

90%: 15cm

8.4cm

2.3cm



How is RIM useful in practice?

• It tolerates certain deviation.

• Good for robot/cart/asset tracking, not ideal for human tracking.
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Problems

• However accurate it predicts, the errors always accumulate

• Useful for short-term tracking

• Fusion with other modalities
• Augment GPS (GPS alone may not be accurate)

• Visual-inertial odometry

• WiFi SLAM (Simultaneous Localization and Mapping)

• Mapping
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How to overcome drifts?

• Find global/absolute references to overcome local/relative
errors

• External information
• WiFi, GPS, Bluetooth, Vision…

• Internal information
• Use IMUs differently, e.g., to find landmarks with unique motion

patterns
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EasiTrack: RIM + Indoor Maps
Large-Scale Decimeter-Level Indoor Tracking with a Single AP

Distance 
EstimationCSI

IMU Orientation 
Estimation

Graph-based 
Particle Filter

Map

Location 
Estimates

Display

RIM
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EasiTrack: Easy, Accurate, Scalable Indoor Tracking

Wu, C., Zhang, F., Wang, B., & Liu, K. J. R. EasiTrack: Decimeter-Level Indoor Tracking With Graph-Based Particle Filtering. IEEE Internet of Things Journal, 2019.



Bring Maps to Indoor Tracking

• Maps impose constrains of movements
• E.g., people do not penetrate walls
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Particle Filter
•  Sequential Monte Carlo methods

• Represent the posterior distribution of some stochastic process given noisy 
and/or partial observations with a set of samples (i.e., particles)

• (1) Prediction
• Move to the next position with a motion model

• (2) Updating
• Update the likelihood weight of each particle using measurements

• (3) Resampling
• Sequential Importance Resampling (SIR)
• Overcome the degeneracy problem: most of the weights are close to zero

• (4) Estimation
• Determine the target by the particles
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The power of randomness
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An Illustrative Example

83

Ԧ𝑣𝑡
𝑑𝑡

Measurements

Motion model

Ԧ𝑣𝑡+1
𝑑𝑡+1

Ԧ𝑣𝑡+1
𝑑𝑡+1

Importance 
Sampling

Weighting

Sequential 
Importance 
Resampling 



Particle Filter based Map Correction

• (1) Prediction
• Move to the next position with (𝜽, 𝚫𝒅) by position engine

• (2) Updating
• Update the likelihood weight of each particle using Map Info

• (3) Resampling
• Sequential Importance Resampling (SIR)

• (4) Estimation
• Determine the target by the particles

84

Measurements

Motion model



Key Challenges

• Without secondary measurements, how to specify the 
importance and determine the weights of particles?

• Typical systems have some additional measurements (e.g., laser 
ranging, WiFi-based estimations) for this purpose

• Without global ranging, how to overcome accumulative errors?
• Errors, in particular direction errors from IMU sensors accumulate 

significantly over time
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Particle Weighting (1): Hit and Die

• Initially, each particle gets an equal weight of 1/N

• Any particles that hit the inaccessible areas (e.g., a wall) 
during a move (prediction) will die; others survive

• Set the likelihood weights of “dead particles” to be 0.

• For any living particle, weight it by its “Distance-to-live”
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Particle Weighting (2): Distance-To-
Live (DTL)
• Derived by particle status (position, direction) and map constraints

• DTL: the max accessible distance from current position along the current 
moving direction

• Max-DTL: force overlarge DTLs to be the same

87



Particle Filter Tracking
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Inertial Tracking with Maps
Start point End point

Before map-engine After map-engine 
(final output)
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EasiTrack Demo
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Demos
50

 m

60 m

40
 m

50 m
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Raw trace w/o map Final trace w/ map



Map-based Correction

• No other measurements (WiFi RSS, BLE, etc) needed

• Only a plain image of indoor floorplan
• Represented as a binary image indicating accessible and inaccessible

locations

• PF-based design is easy to implement and efficient to calculate
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A Step Towards “Indoor GPS”

Accuracy
Decimeter-level (even in NLOS)

Installation
A single unknown AP, easy to install

Coverage
One AP for 3,000 m2, including NLOS

Scalability
Massive clients (like GPS) and buildings

Robust
To environmental changes / people
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Location: A long way to go…
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Questions?

• Thank you!
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