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A Readl Event

Please be aware of your surroundings.

& Updated: 1 minute ago
Remaining distance: 81.8 mile

* Your car was stolen and parked somewhere. sa s
* The only information that you can still have Is e

the car App St
 for remote engine start & lock o e 3

» that offers a relative distance to the owner’s phone W =)

» What would you do to find the car? \M

Mazda Mobile




WHERE Am |?

f

Who Are You,
Where Are You Going,

Where Have You Been?




Localization: A long history...




31 satellites / 3m m
o

° ST —

®

Final deactivation of _2uu
selective availability °

navigation
o
Worldwide use FREE E@? m
’
N Esc
%E] °

\ 1989-94 =
Block Il satellite | &35
Hand-held RX L &

NAVSTAR W

. ®
 Transit | 1050 W ®
. o 1978-85

m — Block | .
Satellite




Indoor Positioning
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Indoor Positioning

Mobiles & Wearables




Device-based vs. Device-free

 Two different contexts
* Device-based: A user carries a certain device in order to be located
» Device-free: A user can be located without carrying/wearing any

devices
* Our focus: Device-based approaches

« GPS
« Smartphone localization
» Robot/asset tracking

* Device-free approaches are more related to contactless
wireless sensing (last topic).
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An Ildead Indoor “GPS”

» Despite 30+ years of worldwide efforts, we still do not have a
practical solution today that scales to the world.

* Why?

* Among many reasons
* No worldwide “GPS” — infrastructure
« Complex indoor environments

« Higher accuracy requirement than outdoors
« ~1 m needed to differentiate neighboring rooms, aisles in supermarkets...




An Ildead Indoor “GPS”

e Accurate
e ~1m

e Robust
* Environmental changes/dynamics

» Scalable

« Worldwide buildings and global users
« Easy-to-install

* Infrastructure-free

 Coverage
« Sustainable




Example Architecture

Cloud Server Clients

A =S

Request

: Fingerprint- Ranging-based -
Algorithm based Methods Methods et I:I ﬁ
Location @ @ ((('ﬂ
Indoor Floorplan | RadloMap
ucture

WiFi, GSM, RFID, Bluetooth FM, Sound, Visible Light, Ultrasound, Infrared, etc

Data
Resource




Three Mainstream Approaches

Triangulation Fingerprinting Dead-Reckoning
Angulation / Lateration Location matching Inertial Tracking
xg]\ ZJZ Xl.,yl 2 YZ Ogj #,;\4.
/ 1 ) £, é@}'g(xﬂy)
. PS - w A (xj1,y51)
* Metrics

Accuracy: ~1 m

Cost: hardware, installation, deployment, maintenance, etc
Coverage: How large space can be supported?

Scalability: How many users/buildings to support?




Early Systems (1)

Active Badge

Designed and prototyped between 1989 and 1992
Alan Jones By Andy Hopper etc, Olivetti Research Lab (ORL)

Obvalt Fuoead LM

Signals: infra-red signals
Beacons: Pre-deployed networked infra-red receivers
Tags: small active badge

Technology: landmarks
Accuracy: room scale




Early Systems (2)

Bat Ultrasonic Location System

Designed and prototyped between 1997 and 2001
By Andy Hopper etc, AT&T Cambridge Lab

Signals: short pulse of ultrasonic

Beacons: pre-deployed networked ultrasonic
Sensors

Tags: ultrasonic transmitter (a Bat)

Technology: triangulation
Accuracy: centimeter




Early Systems (3)

Cricket

Designed and prototyped between 2000 and 2006
By Hari Balakrishnan etc, CSAIL MIT

Signals: ultrasonic signals & RF signals

Beacons: Ceiling-mounted, transmitted concurrent
RF and ultrasonic signals

Listeners: small active badge

Technology: landmarks
Accuracy: centimeter / room-level granularity




Trilateration/Triangulation

* The approach of GPS

Satellite 1




Trilateration/Multilateration

R1 R2

* Given
¢ Ri = (Xi,yi),i — 1,2,3,"'N dl
* d;: distance from X to R; d2
. O . VN
e Solve X = (x,y): X = argmin ;. ||X — R;|| X
X

d3

A Solution using Least Squares Method

(x—x)? + (y —y)? = df R3
: » AX = b » £ =(ATA)14Tb
(x —xn)? + & —yw)? = dfy




Trilateration/Multilateration

R1

 Ranging is the key e
« What infrastructure/technology to use? d1
« What ranging approach to use? 42
X
« Recall ranging d3
Time =tl
n R3
Absorption “j
d Refle+ction I:*::I
> Range Resolution depends on the bandwidth
=

C

dres —

B

d=c(t2-t1)/2




Acoustic Ranging

Time =11 Time = t2

BeepBeep: a high accuracy acoustic ranging system using COTS mobile devices, SenSys’07




Root causes of inaccuracy

Time =t1 Time =t2

 Clock synchronization errors

« Sending/receiving uncertainties
* 1 ms error in time = 34 cm error In distance
« 1 cm ranging accuracy requires 30us timing accuracy

oy
Device A Device B

software issuing command software aware of arrival
£6.= wall clock(); éééd(sound_dev, signal);
‘write(sound_dev, signal) ; tl = wall clock();

unknown delays unknown delays

| sound leaves ) |
- (software, system, K Soun_d (hardware, interrupt, |
~driver, hardware, ...) p?a er reaches r“nlc“ driver, scheduling, ...) |
i = lvwe = i
/e |/ —wi] | o)
rd v 7

~
7

time




Acoustic Ranging: BeepBeep

1. Device A emits a beep while pevice A

poth recording =

2. Device B emits another beep
while both continue recording

Device B

3. Both devices detect TOA of the A's recording B's recording
two beeps and obtain respective Vi AW v
ETOAs N

ETOA, ETOA;

4. Exchange ETOAs and calculate

the distance M

DAB: | ETOAA' ETOAB |/2




Timeline

Device A Device B




Timeline

Device A

tao

1st Beep
’/\\;ﬂ*.jp vﬁ'. /

Device B




Timeline

Device A Device B




Timeline

Device A Device B




Timeline

Device A

2"d Beep

Device B




Timeline

Device A Device B

ETOA, 2"d Beep

B3




Timeline

Device A

ETOA,

2"d Beep

Device B



Timeline

Device A

2"d Beep

Device B



Timeline

Device A

Device B

2"d Beep




Timeline [ETOALETOAS
Device A Device B = (P+Q+P) — (Q)

= 2P

: dg atda = C-[(tastar)-(tas-te)] +daatds g
""""""" = C'(ETOAA'ETOAB)'l'dA,A +d|3,|3

ETOA, 2"d Beep -(daB+dp.a)

(81 — ta0) + (ta3 — tB2))
- (t1 — tB2 + B3 — tB3 + ta3 — tao +La1 — La1)

- ((tas — ta1) — (s — tp1) + (¢Bs — tp2) + (ta1 — ta0))

NI NONION|ODNI| -

- ((ta3 — ta1) — (s — tp1)) + %(dB,B + daa)




WIFI RSSI-based Ranging

* The spread in RSS for a given distance is huge, making inversion to
estimate the distance from RSS ill posed

* No path-loss model, no matter how complex, can overcome this problem.
 Using CSI helps, but does not solve the problem. -,
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RSSI-based Ranging

* There are many path loss models!
* Log-Distance Path Loss

d
Py = Pdo T 1071g(d_0

* P;: RSS in decibel measured at a
distance of d (in meters)
* P, : The received power (RSS) at a

distance d, (usually takes the value of 1
meter), assumed as a constant empirical
value (e.g., -40 dB) given Tx power.

* y. path loss exponent

Building type
Vacuum, infinite space
Retail store
Grocery store
Office with hard partition
Office with soft partition
Office with soft partition
Textile or chemical
Textile or chemical

Office

Commercial

Frequency of transmission 7y

914 MHz
914 MHz
1.5 GHz
900 MHz
1.9 GHz
1.3 GHz
4 GHz
60 GHz
60 GHz

2.0
2.2
1.8
3.0
2.4
2.6
2.0
2.1
2.2
1.7




WIFI RSSI-based Ranging

cccccccc

e RANGING

9 Estimate distance from
channel measurements

RSSI: Signal strengths
decays logarithmically over
= = distance

ToF: Time of Flight
AoA: Angle of Arrival




WIFI RSSI-based Ranging
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b Estimate distance from
channel measurements

Fairview Court
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Historica | Trail - The...

Temporarily closed

RSSI: Signal strengths

B decays logarithmically over
| = distance

EEEEE

ToF: Time of Flight
AoA: Angle of Arrival




WIiFi Ranging: FTM

* WIi-FI Fine Timing Measurement (FTM)
 [IEEE 802.11mc FTM RTT

i H The RTT is calculated for n FTM messages:

STA |Initial FTM Request — AP Lo n Lo n
(initiator) —>|(responder) RIT = ;(Z ta(k) - > ta(k)) - ;(Z ta(k) = ) ta(k)
k=1 k=1 k=1

(_____ﬁ.Q-K—'—"" k=1

e..—-—F—TM;-l—/tl(l) 30
11.5 T T T ' P e — e m—
B MY SR L B S
LZ(Zi)é___EIM—z——'_’— t1(2) gm_s- _ . | ‘ézo-
t3(2) ACK —314(2) 2 ol HH4 | —trdiin £
tr(3) 1(3) : “ “ | ” H%»%H% .
t3(3) ACK _ Jt,(3) i _ _ g 0
Single Burst with 3 FTMs per Burst S TP Y S—, 14 7 1013 16 19 22 25 28

Samples per burst (spb) Actual distance (m)




More problems about Trileteration

« Ranging accuracy is only one concern

* Hardware cost
* High cost for installation and maintenance
 Prior knowledge of the anchors

 Where are the ”“indoor satellites”?




Fingerprinting

RADAR

The first fingerprint-based system
Leading a new epoch / 2000

Paramvir / Victor Bahl

HoRruUS

Improved upon RADAR
/ 2004

Moustafa Youssef

LANDMARC

First RFID Fingerprinting System
/ 2004

Yunhao Liu




What fingerprints?

* WiFi: One of the most ubiquitous signhatures
 RFID

» Acoustics/sound
« Geomagnetism
* FM signals

e Light

Spatial Distinction

Temporal Invariance




Geo-Magnetism Fingerprinting

Database: <mag_x i, mag_Vy |, mag_z I, Location_i>

Observation: <mag_x, mag_y, mag_z>

Find the ‘I’ (or a sequence) for which RMS
difference between the observation and
the stored magnetic value is minimum.

Indoor Location Sensing Using Geo-Magnetism, MobiSys’11




WIFI Fingerprinting

 Existing WIiFI = Infrastructure free
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WIFI Fingerprinting

 Existing WIiFI = Infrastructure free
x1yl)  (2y2)  (x3,y3) f(,.l

AP 1:-65
AP 2:-50
AP 3: -80
AP 4: -85




WIFI Fingerprinting

 Offline phase: Building the fingerprint database
* Online phase: Handle location query and find the best match

Training Localization Location

' Query

Indoor
Floorplan | Radlo Map | |
e : ; Localization .
Site Survey gl: :1:; Algorithm D'.I.'D
WiFi _
Fingerprints - g o

Location




How to build fingerprint database?

* RSS as unique feature of a physical location
» Site Survey: Build fingerprint database of RSS-location records

* Estimate location by finding best-matched item
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Problems of Site Survey

* Time-consuming and labor-intensive
« Leverage mobile crowdsourcing

* Environmental changes (Recall RSS-based human detection?)
* Need to recalibrate periodically

15 - : - ; 15

10}

vvvvvvvvvvvvvvvvvvvv

bl |
= = ®
= = =

)
TP

Smartphones based Crowdsourcing for Indoor Localization, ACM MobiCom’12/IEEE TMC’15

- =20 =10 0 10 20 30 30 =20 =10 0 10 20

(a) 2D stress-free floor plan (a) 2D fingerprint space




Limitations of Fingerprinting

 Limited Accuracy
« Spatial ambigquity: RSS doesn’t provide enough resolution
« Temporal variability: RSS varies significantly over time

* Low hardware cost but still high deployment cost
* Time-consuming and labor-intensive
* Relieved by crowdsourcing

« Still one of the most practical approaches, used partially in
Google/Apple maps

« Made (more) practical and usable nowadays with big data and Al
models




CSI Fingerprinting

* Achieving 1cm accuracy & robust to environment changes!

* TRRS as distance measure
» Time-Reversal Resonating Strength
« Cosine similarity?

[HPHy|?

k(Hi.Hz) = (H1.H1){H>.H>)

H;: CSl at location 1
H;: CSl at location 2

 Problem?




Inertial Tracking

 Basic tasks
 Distance/displacement estimation
 Direction estimation
* Integrate distance and direction over time to track locations

 Pros
* Infrastructure-free
 Scalable

e Cons

« Accumulative errors
« Difficult to infer a user’s heading direction (different from device orientation)

« Unconstrained user behavior for pedestrian tracking




Inertial Tracking

 a.k.a Dead-reckoning
 PDR: Pedestrian Dead-Reckoning

* Truly infrastructure-free

IMU _ 3D
¥ Data Motion Trajectory
Position update 2 "'-_ P — Tracki ng >
Time = 18.5 seconds Algorlth m

z-axis accelerometer registers
-10°/sford.5s

x-axis accelerometer registers
1 m/s?for 10 s, then -5 m/s?for 2 s

Open Problem in mobile computing
“No one has the solution...But people making progress”

v




Inertial Tracking

« Can we solve tracking with these inputs?

Initial Location

Algorithm 3D

HH 2 IMU = Accel + Gyro + Mag Trajectory

T
[xo Yo 2ol
Initial Location > ? Xt

Algorithm > |Vt

IMU = Accel + Gyro + Mag
>

Zoom into IMU data: \

ax gx
Accel. = [Gy] Gyro. = |Gy Mag. = [ ‘
a’Z gZ

(Linear Acceleration) (Angular Velocity) ,\ (Earth’s Magnetic North)

\ Delta rotation in unit time /




Inertial Tracking

* One possible solution: Direct integration

(X0 Yo Zo]T

Initial Location > ? X;
i >

IMU = Accel + Gyro + Mag Aleentiin JZ}t

> t

Ax
Accel. = [ay| is measured in local reference frame,
a’Z

+ ﬂ.t(Accel.) dt?
0

X0
Yo
Zy and needs to convert into the global reference frame.

 Big Problem: Acc drifts, gyro drifts, significantly
* Huge (') accumulative errors of time




Pedestrian Dead-Reckoning

* Any good idea to get a better/reasonable estimate of distance?

Predicted Result

-~ i

Ground Truth
N i
—4 L Ll L Ll ) Ll L
0 1000 2000 3000 4000 5000
Double Integration : -551m Direction also drifts significantly over time

PPPPPPPP?




3D Orientation

 The 3D rotation needed for coordinate transformation
 [Frontwards, rightwards, upwards] - [Northwards, eastwards, vertical]

Initial Location > Xt
f+} > |Vt
Accel. Accel. ]
Gyro. 3D IMU Zt
IMU (Local) > > > ¢
Mag. .| Orient. | (Global) L




3D Orientation

* Main opportunities
« Constant gravity
« Magnetic north

« Key idea: What rotation is needed such that
« Gravity Is exactly in the downward direction
* North is exactly in the frontward direction




3D Orientation

 For static objects, can rely mostly on gravity + North
* Does not work well for moving objects

« Any motion will affect the reported acceleration and pollute the gravity
estimate

* Another idea: Integrate angular velocity from gyroscope for
continuous estimation
* Gyro also drifts, only useful in short time scales

Initial
Orientation

t
New .

= tt t

J;, (Gyro.) at Orientation Gty




3D Orientation: Sensor Fusion

Static Moving Static Moving Static Moving
—A ! YammYi ! Y — ! ! (MOI"E) Accurate 3D
T T Time orientation all the time!

Rely mostly on Rely mostly on
gravity + North  gyro integration

ol —s X; « If static: Rely mostly on gravity +
—> |Vt North
Zt :
. « If moving: Rely mostly on gyro
l
MU — <ot -~ ey st 7 rocatien integration
L | —g—) rient. IMU e ) . .
(tocal X oo, 55—/ Globalls - Gravity as the main reference
> >l Orient. anchor




3D Orientation

* What if the object is not often static?

* Many different sensor fusion algorithms

* No good solution today...
« Count on you to solve the problem...

Static Moving Static Moving
==t : Y=y :

—I

Time




Pedestrian Dead-Reckoning

* Any good idea to get a better/reasonable estimate of distance?

! W | ”M Wi

0 1000 2000 3000 4000 5000

Double Integration : -551m

Step Count: 63 steps (using magnitude)
el




Pedestrian Dead-Reckoning

* Any good idea to get a better/reasonable estimate of distance?

- o o I+ all Step counting instead of
2 1 F 1 . - .
. | : double integration
0.
N aloe mww 'H HWMW Wf (# of steps) x (stride length)
_2 .
. How to get stride length?
4l | | | | | - Fixed value
’ o o0 00 4000 000 - Estimation given height
Double Integration : -551m - D : :
Step Count: 63 steps (using magnitude) ynamically estimated

PPPPPPPP?




Visual Inertial Tracking

* Visual-Inertial Odometry (VIO)

Straight Turning Occluded

‘é‘v-

111l

MmO

i

Visual [96.27%] Inertial [81.71%] Visual [94.82%)] Inertial [95.28%] Visual [92.46%] Inertial [90.53%)

Straight Turning Occluded

Pre- mtegrated IMU Measuremtents Visual [97.29%] | Inertial [84.40%)] Visual [95.19%] © Incrtial [96.86%] . Visual [90.929] * " Inertial [91.83%]

IMU Measurements
by




Neural Inertial Tracking

» Using deep neural networks to learn
* The distance, velocity, and/or positions
« And thus predict the moving trajectories




Tracking Results

— Tango (Ground truth) — RIDI ’

Hand . The subjcc.t The subject
Bin starts walking puts the de-

& \ with the device  vice into the
Leg

\in the hand.

A . .
5.0 Point of interests

7~

Placement:-leg | Placement: bag
MPE: 0.89m (1.34%) MPE: 1.64m (2.47%)

The subject
puts the dev-
vice into the
bag.

The subject
puts the de-
vice on a ta-
ble and rests
for a while.

e

The subject hol-
ds the device and e i
turns to the left ! | |
while walking ‘

fowards. Placement: hand Placement: body |
) . MPE: 1.73m (2.53%) MPE: 1.20m (1.79%)




NeurIT: Time-Frequency Block-recurrent Transformer

Trajectory:“w.
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Building A, Floor 1 (narrow, crowded)
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e NeurlT //ﬁ\\

===+ Ground Truth ’/ 140
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Building B (mixed, complex)

Building C (large, open)

Xinzhe Zheng, Sijie Ji, Yipeng Pan, Kaiwen Zhang, Chenshu Wu, “NeurlIT: Pushing the Limit of Neural Inertial Tracking for Indoor Robotic loT”, 2024.




Inertial Measurement Unit Recap

Measuring the linear

Moving Distance .
g Accelerometer acceleration

Reporting the

Heading Direction _ _
absolute orientation

Magnetometer

Motion
Parameters

Calculating the
angular velocity

Rotating Angle Gyroscope

Significant limitations in precise and robust motion estimation:
Accelerometer: Noisy readings, step counting for distance

Gyroscope: Accumulative errors due to integration

Magnetometer: Environment interference, cannot infer heading direction




RIM: RF-based Inertial Measurement

e Turns COTS WiFI radio into precise IMU that measures motion
parameters at centimeter accuracy:

* Moving distance, Heading direction, Rotating angle

Access Point (AP) . o
((( ))) « One single arbitrarily placed AP
| « No additional infrastructure
c o * Not require large bandwidth or many
COTS WiFi receiver phased antennas
« No need of a priori calibration
-> « Works for LOS & NLOS

L




Virtual Antenna Alignment

h 4 &t tk3tk2tk1tk >
1 4 AL AVANANA 4 A A 4 v Multipath Profiles as
'I qntennq I l :r :, :, :, ......... :r :, :, —_— ) p I
L S U S : Virtual Antennas!
7’7
virtual antennas
At Aligned virtual antennas Ad
¢ H=—
- b bt L bs o ba b 3 At
ID array | ‘ TR T R A A e
D B IED U S - d= | odt
—— T 1 d t
Ad AdIglA A A s ™ 4 b b
bt b i b3 Teo Teg T Moving distance




Super-Resolution Virtual Antenna Alignment

How to accurately pinpoint the space-time point that two virtual
antennas are aligned with each other, at sub-centimeter resolution?

e.g., 1cm error = ~ 50% error in speed
= 30° heading error = 22¢ rotation error




Time-Reversal Principle

Time Reversal
Transmission
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Time Reversal Resonating Strength (TRRS)

 Time-Reversal Focusing Effect. The received CSI, when combined with its

time-reversed and conjugated counterpart, will add coherently at the intended location
but incoherently at any unintended location, creating a spatial focusing effect
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Virtual Massive Antennas

« Overcome distortions in TRRS: Leveraging consecutive
multipath profiles as massive virtual antennas
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Tracking Alignment Delay

« Continuously track alignment delay via Dynamic Programming
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A WIiFI Ruler with RIM

True Distance = 10.27 m
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Results

« 1 single AP, 7 different locations

 Both LOS and NLOS (40m away through
multiple walls) 1

* 200Hz sampling rate on a 40MHz channel in 08k 90%: 15¢rT

the 5GHz band
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How is RIM useful in practice?

* |t tolerates certain deviation.
» Good for robot/cart/asset tracking, not ideal for human tracking.
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Problems

« However accurate it predicts, the errors always accumulate

 Useful for short-term tracking

* Fusion with other modalities
 Augment GPS (GPS alone may not be accurate)

* Visual-inertial odometry
* WiFi SLAM (Simultaneous Localization and Mapping)

* Mapping




How to overcome drifts?

* Find global/absolute references to overcome local/relative
errors

 External information
 WiFi, GPS, Bluetooth, Vision...

* Internal information

« Use IMUs differently, e.qg., to find landmarks with unique motion
patterns




EasiTrack: RIM + Indoor Maps

Large-Scale Decimeter-Level Indoor Tracking with a Single AP

Distance e [ Display ]J
Estimation
. RIM 1
______________ Graph-based Location
Orientation | Particle Filter ’{ Estimates ]
Estimation

EasiTrack: Easy, Accurate, Scalable Indoor Tracking

Wu, C., Zhang, F., Wang, B, & Liu, K. J. R. EasiTrack: Decimeter-Level Indoor Tracking With Graph-Based Particle Filtering. IEEE Internet of Things Journal, 2019.




Bring Maps to Indoor Tracking

* Maps impose constrains of movements
* E.g., people do not penetrate walls
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Particle Filter

« Seqguential Monte Carlo methods

* Represent the posterior distribution of some stochastic process given noisy
and/or partial observations with a set of samples (i.e., particles)

* (1) Prediction
* Move to the next position with a
* (2) Updating
« Update the likelihood weight of each particle using
* (3) Resampling
« Seqguential Importance Resampling (SIR)
« Overcome the degeneracy problem: most of the weights are close to zero

* (4) Estimation
« Determine the target by the particles




The power of randomness

Estimate m with random numbers
and a circle...
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An lllustrative Example

ﬂ Motion model

Importance Ut /7| Measurements
Sampling - d;

Weighting
det1
Sequential >
Vt41
Importance dy.q

Resampling O™q




Particle Filter based Map Correction

° (1) Prediction /7| Motion model
* Move to the next position with
° (2) Updatlng /7| Measurements

« Update the likelihood weight of each particle using
* (3) Resampling

« Sequential Importance Resampling (SIR)
* (4) Estimation

* Determine the target by the particles




Key Challenges

* Without secondary measurements, how to specify the
Importance and determine the weights of particles?

* Typical systems have some additional measurements (e.g., laser
ranging, WiFi-based estimations) for this purpose

* Without global ranging, how to overcome accumulative errors?

* Errors, in particular direction errors from IMU sensors accumulate
significantly over time




Particle Weighting (1): Hit and Die

* Initially, each particle gets an equal weight of 1/N

» Any particles that hit the inaccessible areas (e.g., a wall)
during a move (prediction) will die; others survive

» Set the likelihood weights of “dead particles™ to be 0.
* For any living particle, weight it by its “Distance-to-live”




Particle Weighting (2): Distance-To-
Live (DTL)

 Derived by particle status (position, direction) and map constraints

 DTL: the max accessible distance from current position along the current
moving direction

 Max-DTL.: force overlarge DTLs to be the same
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seq: 199; current dir: 0.07; raw dir: 268.93
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Inertial Tracking with Maps

0 = 5 seq: 19109; current dir: 0.09; raw dir: 278.54
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Map-based Correction

* No other measurements (WiFi RSS, BLE, etc) needed

* Only a plain image of indoor floorplan

« Represented as a binary image indicating accessible and inaccessible
locations

* PF-based design is easy to implement and efficient to calculate




A Step Towards “Indoor GPS”

Accura Ccy
Decimeter-level (even in NLOS)
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Location: A long way to go..

&




Questions?

* Thank you!
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