COMP3516: Data Analytics for IoT

Lecture 8: Indoor Localization

Chenshu Wu

Department of Computer Science 2025 Spring

Contents

- Overview
- Triangulation/Trilateration
 - Acoustic Ranging
 - RSSI-based Ranging
- Fingerprinting
 - RSSI Fingerprinting
 - From RSSI to CSI
- Inertial Tracking
 - IMU-based Inertial Tracking
 - RF-based Inertial Tracking
- Maps and Localization

A Real Event

- Your car was stolen and parked somewhere.
- The only information that you can still have is the car App
 - for remote engine start & lock
 - that offers a relative distance to the owner's phone
- What would you do to find the car?

Please be aware of your surroundings. Updated: 1 minute ago Remaining distance: 81.8 mile GPS accuracy: ±32 feet

WHERE Am I?

Who Are You, Where Are You Going, Where Have You Been?

Localization: A long history...

Indoor Positioning

Indoor Positioning

Robot Navigation

VR Gaming

Sports Analytics

Mobiles & Wearables

Device-based vs. Device-free

Two different contexts

- Device-based: A user carries a certain device in order to be located
- Device-free: A user can be located without carrying/wearing any devices
- Our focus: Device-based approaches
 - GPS
 - Smartphone localization
 - Robot/asset tracking
 - ...
- Device-free approaches are more related to contactless wireless sensing (last topic).

......

CISCO

An Idea Indoor "GPS"

• Despite 30+ years of worldwide efforts, we still do not have a practical solution today that scales to the world.

• Why?

- Among many reasons
 - No worldwide "GPS" infrastructure
 - Complex indoor environments
 - Higher accuracy requirement than outdoors
 - ~1 m needed to differentiate neighboring rooms, aisles in supermarkets...

An Idea Indoor "GPS"

- Accurate
 - ~1 m
- Robust
 - Environmental changes/dynamics
- Scalable
 - Worldwide buildings and global users
- Easy-to-install
 - Infrastructure-free
- Coverage
- Sustainable

Example Architecture

Three Mainstream Approaches

Triangulation

Angulation / Lateration

Fingerprinting

Inertial Tracking

• Metrics

- Accuracy: ~1 m
- Cost: hardware, installation, deployment, maintenance, etc
- Coverage: How large space can be supported?
- Scalability: How many users/buildings to support?

Early Systems (1)

Active Badge

Designed and prototyped between 1989 and 1992 By Andy Hopper etc, Olivetti Research Lab (ORL)

Signals: infra-red signals Beacons: Pre-deployed networked infra-red receivers Tags: small active badge

Technology: landmarks Accuracy: room scale

Early Systems (2)

Bat Ultrasonic Location System

Designed and prototyped between 1997 and 2001 By Andy Hopper etc, AT&T Cambridge Lab

Signals: short pulse of ultrasonic Beacons: pre-deployed networked ultrasonic sensors Tags: ultrasonic transmitter (a *Bat*)

Technology: triangulation Accuracy: centimeter

Early Systems (3)

Cricket

HE UNIVERSITY OF HONG KO

Designed and prototyped between 2000 and 2006 By Hari Balakrishnan etc, CSAIL MIT

Signals: ultrasonic signals & RF signals Beacons: Ceiling-mounted, transmitted concurrent RF and ultrasonic signals Listeners: small active badge

Technology: landmarks Accuracy: centimeter / room-level granularity

Trilateration/Triangulation

• The approach of GPS

Trilateration/Multilateration

Given

- $R_i = (x_i, y_i), i = 1, 2, 3, \dots N$
- d_i : distance from X to R_i
- Solve X = (x, y): $\hat{X} = \underset{X}{\operatorname{argmin}} \sum_{i=1}^{N} ||X R_i||$
- A Solution using Least Squares Method

$$\begin{cases} (x - x_1)^2 + (y - y_1)^2 = d_1^2 \\ \vdots \\ (x - x_N)^2 + (y - y_N)^2 = d_N^2 \end{cases} \land AX = b \land \hat{X} = (A^T A)^{-1} A^T b$$

Trilateration/Multilateration

Ranging is the key

- What infrastructure/technology to use?
- What ranging approach to use?
- Recall ranging

HE UNIVERSITY OF HONG KO

Range Resolution depends on the bandwidth

$$d_{res} = \frac{c}{B}$$

Acoustic Ranging

BeepBeep: a high accuracy acoustic ranging system using COTS mobile devices, SenSys'07

Root causes of inaccuracy

- Clock synchronization errors
- Sending/receiving uncertainties
 - 1 ms error in time = 34 cm error in distance

• 1 cm ranging accuracy requires 30us timing accuracy

Acoustic Ranging: BeepBeep

- 1. Device A emits a beep while both recording
- 2. Device B emits another beep while both continue recording
- 3. Both devices detect TOA of the two beeps and obtain respective ETOAs
- 4. Exchange ETOAs and calculate the distance

香港大學 THE UNIVERSITY OF HONG KONG $|ETOA_A - ETOA_B|$ = (P+Q+P) - (Q)= 2P

$$d_{B,A}+d_{A,B}= c \cdot [(t_{A3}-t_{A1})-(t_{B3}-t_{B1})] + d_{A,A}+d_{B,B}$$

= c \cdot (ETOA_A-ETOA_B)+d_{A,A}+d_{B,B}

$$D = \frac{1}{2} \cdot (d_{A,B} + d_{B,A})$$

= $\frac{c}{2} \cdot ((t_{B1} - t_{A0}) + (t_{A3} - t_{B2}))$
= $\frac{c}{2} \cdot (t_{B1} - t_{B2} + t_{B3} - t_{B3} + t_{A3} - t_{A0} + t_{A1} - t_{A1})$
= $\frac{c}{2} \cdot ((t_{A3} - t_{A1}) - (t_{B3} - t_{B1}) + (t_{B3} - t_{B2}) + (t_{A1} - t_{A0}))$
= $\frac{c}{2} \cdot ((t_{A3} - t_{A1}) - (t_{B3} - t_{B1})) + \frac{1}{2}(d_{B,B} + d_{A,A})$

WiFi RSSI-based Ranging

- The spread in RSS for a given distance is huge, making inversion to estimate the distance from RSS ill posed
- No path-loss model, no matter how complex, can overcome this problem.
- Using CSI helps, but does not solve the problem.

RSSI-based Ranging

- There are many path loss models!
- Log-Distance Path Loss

$$P_d = P_{d_0} - 10\gamma \lg(\frac{d}{d_0})$$

- *P_d*: RSS in decibel measured at a distance of *d* (in meters)
- *P*_{d₀}: The received power (RSS) at a distance *d*₀ (usually takes the value of 1 meter), assumed as a constant empirical value (e.g., -40 dB) given Tx power.
- γ : path loss exponent

HE UNIVERSITY OF HONG KO

Building type	Frequency of transmission	γ
Vacuum, infinite space		2.0
Retail store	914 MHz	2.2
Grocery store	914 MHz	1.8
Office with hard partition	1.5 GHz	3.0
Office with soft partition	900 MHz	2.4
Office with soft partition	1.9 GHz	2.6
Textile or chemical	1.3 GHz	2.0
Textile or chemical	4 GHz	2.1
Office	60 GHz	2.2
Commercial	60 GHz	1.7

WiFi RSSI-based Ranging

Ranging

Estimate distance from channel measurements

RSSI: Signal strengths decays logarithmically over distance

ToF: Time of Flight AoA: Angle of Arrival
WiFi RSSI-based Ranging

Ranging

Estimate distance from channel measurements

RSSI: Signal strengths decays logarithmically over distance

ToF: Time of Flight AoA: Angle of Arrival

WiFi Ranging: FTM

• Wi-Fi Fine Timing Measurement (FTM)

• IEEE 802.11mc FTM RTT

THE UNIVERSITY OF HONG KONG

The RTT is calculated for *n* FTM messages:

$$RTT = \frac{1}{n} \left(\sum_{k=1}^{n} t_4(k) - \sum_{k=1}^{n} t_1(k) \right) - \frac{1}{n} \left(\sum_{k=1}^{n} t_3(k) - \sum_{k=1}^{n} t_2(k) \right)$$

More problems about Trileteration

- Ranging accuracy is only one concern
- Hardware cost
- High cost for installation and maintenance
- Prior knowledge of the anchors
- Where are the "indoor satellites"?

Fingerprinting

Radar

The first fingerprint-based system Leading a new epoch / 2000

Paramvir / Victor Bahl

THE UNIVERSITY OF HONG KONC

Horus

Improved upon RADAR / 2004

Moustafa Youssef

LANDMARC

First RFID Fingerprinting System / 2004

Yunhao Liu

What fingerprints?

- WiFi: One of the most ubiquitous signatures
- RFID
- Acoustics/sound
- Geomagnetism
- FM signals
- Light

Spatial Distinction

Temporal Invariance

Geo-Magnetism Fingerprinting

Database: <mag_x_i, mag_y_i, mag_z_i, Location_i> Observation: <mag_x, mag_y, mag_z>

Find the 'i' (or a sequence) for which RMS difference between the observation and the stored magnetic value is minimum.

Indoor Location Sensing Using Geo-Magnetism, MobiSys'11

WiFi Fingerprinting

• Existing WiFi ≈ Infrastructure free

WiFi Fingerprinting

• Existing WiFi ≈ Infrastructure free

WiFi Fingerprinting

- Offline phase: Building the fingerprint database
- Online phase: Handle location query and find the best match

How to build fingerprint database?

- RSS as unique feature of a physical location
- <u>Site Survey</u>: Build fingerprint database of RSS-location records
- Estimate location by finding best-matched item

Problems of Site Survey

- Time-consuming and labor-intensive
 - Leverage mobile crowdsourcing
- Environmental changes (Recall RSS-based human detection?)
- Need to recalibrate periodically

Smartphones based Crowdsourcing for Indoor Localization, ACM MobiCom'12/IEEE TMC'15

20

Limitations of Fingerprinting

Limited Accuracy

- Spatial ambiguity: RSS doesn't provide enough resolution
- <u>Temporal variability</u>: RSS varies significantly over time
- Low hardware cost but still high deployment cost
 - Time-consuming and labor-intensive
 - Relieved by crowdsourcing
- Still one of the most practical approaches, used partially in Google/Apple maps
 - Made (more) practical and usable nowadays with big data and AI models

CSI Fingerprinting

- Achieving 1cm accuracy & robust to environment changes!
- TRRS as distance measure
 - Time-Reversal Resonating Strength
 - Cosine similarity?

• Problem?

HE UNIVERSITY OF HONG KON

Basic tasks

- Distance/displacement estimation
- Direction estimation
- Integrate distance and direction over time to track locations

• Pros

- Infrastructure-free
- Scalable

Cons

- Accumulative errors
- Difficult to infer a user's heading direction (different from device orientation)
- Unconstrained user behavior for pedestrian tracking

- a.k.a Dead-reckoning
- PDR: Pedestrian Dead-Reckoning
- Truly infrastructure-free

8

THE UNIVERSITY OF HONG KONC

Open Problem in mobile computing "No one has the solution...But people making progress"

Can we solve tracking with these inputs?

One possible solution: Direct integration

- Big Problem: Acc drifts, gyro drifts, significantly
 - Huge (!!!) accumulative errors of time

Pedestrian Dead-Reckoning

Any good idea to get a better/reasonable estimate of distance?

- The 3D rotation needed for coordinate transformation
 - [Frontwards, rightwards, upwards] \rightarrow [Northwards, eastwards, vertical]

- Main opportunities
 - Constant gravity
 - Magnetic north
- Key idea: What rotation is needed such that
 - Gravity is exactly in the downward direction
 - North is exactly in the frontward direction

- For static objects, can rely mostly on gravity + North
 - Does not work well for moving objects
 - Any motion will affect the reported acceleration and pollute the gravity estimate
- Another idea: Integrate angular velocity from gyroscope for continuous estimation
 - Gyro also drifts, only useful in short time scales

Initial
Orientation +
$$\int_0^t (Gyro.) dt$$
 = New
Orientation (at time t)

3D Orientation: Sensor Fusion

- If static: Rely mostly on gravity + North
- If moving: Rely mostly on gyro integration
- Gravity as the main reference anchor

- What if the object is not often static?
- Many different sensor fusion algorithms
 - No good solution today...
 - Count on you to solve the problem...

Pedestrian Dead-Reckoning

Any good idea to get a better/reasonable estimate of distance?

, 8

Pedestrian Dead-Reckoning

Any good idea to get a better/reasonable estimate of distance?

<u>Step counting</u> instead of double integration

(# of steps) x (stride length)

How to get stride length?

- Fixed value
- Estimation given height
- Dynamically estimated

Visual Inertial Tracking

Visual-Inertial Odometry (VIO)

THE UNIVERSITY OF HONG KONG

[-[[-1]]-1][--1-1-1]11[[]][[]-1-1----

Neural Inertial Tracking

- Using deep neural networks to learn
 - The distance, velocity, and/or positions
 - And thus predict the moving trajectories

Tracking Results

NeurIT: Time-Frequency Block-recurrent Transformer

Xinzhe Zheng, Sijie Ji, Yipeng Pan, Kaiwen Zhang, Chenshu Wu, "NeurIT: Pushing the Limit of Neural Inertial Tracking for Indoor Robotic IoT", 2024.

Inertial Measurement Unit Recap

Significant limitations in precise and robust motion estimation:

- Accelerometer: Noisy readings, step counting for distance
- **Gyroscope**: Accumulative errors due to integration
- Magnetometer: Environment interference, cannot infer heading direction

RIM: RF-based Inertial Measurement

- Turns COTS WiFi radio into precise IMU that measures motion parameters at centimeter accuracy:
 - Moving distance, Heading direction, Rotating angle

- One single arbitrarily placed AP
- No additional infrastructure
- Not require large bandwidth or many phased antennas
- No need of a priori calibration
- Works for LOS & NLOS

Wu, C., Zhang, F., Fan, Y., & Liu, K. R., RF-based inertial measurement. ACM SIGCOMM 2019

Virtual Antenna Alignment

Super-Resolution Virtual Antenna Alignment

How to accurately pinpoint the space-time point that two virtual antennas are aligned with each other, at sub-centimeter resolution?

e.g., 1cm error = \sim 50% error in speed = 30° heading error = 22° rotation error

Time-Reversal Principle

Time Reversal Transmission

Time Reversal Resonating Effect

TR Resonating Strength (TRRS)

Wu, Z. H., Han, Y., Chen, Y., & Liu, K. J. R.. A time-reversal paradigm for indoor positioning system. IEEE TVT 2015. Zhang, F., Chen, C., Wang, B., Lai, H. Q., Han, Y., & Liu, K. J. R.. WiBall: A time-reversal focusing ball method for decimeter-accuracy indoor tracking. IEEE IOTJ, 2018

Time Reversal Resonating Strength (TRRS)

• **Time-Reversal Focusing Effect:** The received CSI, when combined with its time-reversed and conjugated counterpart, will add coherently at the intended location but incoherently at any unintended location, creating a spatial focusing effect

TRRS Resolution

- The peak value as high as possible
- The peak width as narrow as possible
- The above two properties as robust as possible

Virtual Massive Antennas

 Overcome distortions in TRRS: Leveraging consecutive multipath profiles as massive virtual antennas

Tracking Alignment Delay

Continuously track alignment delay via Dynamic Programming

A WiFi Ruler with RIM

True Distance = 10.27 m

Measure the perimeter of a big round table

Results

- 1 single AP, 7 different locations
- Both LOS and NLOS (40m away through multiple walls)
- 200Hz sampling rate on a 40MHz channel in the 5GHz band

How is RIM useful in practice?

- It tolerates certain deviation.
- Good for robot/cart/asset tracking, not ideal for human tracking.

Problems

- However accurate it predicts, the errors always accumulate
- Useful for short-term tracking
- Fusion with other modalities
 - Augment GPS (GPS alone may not be accurate)
 - Visual-inertial odometry
 - WiFi SLAM (Simultaneous Localization and Mapping)
 - Mapping

How to overcome drifts?

- Find <u>global/absolute</u> references to overcome <u>local/relative</u> errors
- External information
 - WiFi, GPS, Bluetooth, Vision...
- Internal information
 - Use IMUs differently, e.g., to find landmarks with unique motion patterns

EasiTrack: RIM + Indoor Maps

Large-Scale Decimeter-Level Indoor Tracking with a Single AP

EasiTrack: Easy, Accurate, Scalable Indoor Tracking

Wu, C., Zhang, F., Wang, B., & Liu, K. J. R. EasiTrack: Decimeter-Level Indoor Tracking With Graph-Based Particle Filtering. IEEE Internet of Things Journal, 2019.

Bring Maps to Indoor Tracking

- Maps impose constrains of movements
 - E.g., people do not penetrate walls

Particle Filter

- Sequential Monte Carlo methods
 - Represent the posterior distribution of some stochastic process given noisy and/or partial observations with a set of samples (i.e., *particles*)
- (1) Prediction
 - Move to the next position with a motion model
- (2) Updating
 - Update the likelihood weight of each particle using measurements
- (3) Resampling
 - Sequential Importance Resampling (SIR)
 - Overcome the degeneracy problem: most of the weights are close to zero
- (4) Estimation
 - Determine the *target* by the particles

The power of randomness

An Illustrative Example

Particle Filter based Map Correction

- (1) Prediction
 - Move to the next position with $(\theta, \Delta d)$ by position engine
- (2) Updating

Measurements

Motion model

- Update the likelihood weight of each particle using Map Info
- (3) Resampling
 - Sequential Importance Resampling (SIR)
- (4) Estimation
 - Determine the *target* by the particles

Key Challenges

- Without secondary measurements, how to specify the importance and determine the weights of particles?
 - Typical systems have some additional measurements (e.g., laser ranging, WiFi-based estimations) for this purpose
- Without global ranging, how to overcome accumulative errors?
 - Errors, in particular direction errors from IMU sensors accumulate significantly over time

Particle Weighting (1): Hit and Die

- Initially, each particle gets an equal weight of 1/N
- Any particles that hit the inaccessible areas (e.g., a wall) during a move (prediction) will die; others survive
- Set the likelihood weights of "dead particles" to be 0.
- For any living particle, weight it by its "Distance-to-live"

Particle Weighting (2): Distance-To-Live (DTL)

- Derived by particle status (position, direction) and map constraints
- DTL: the max accessible distance from current position along the current moving direction
- Max-DTL: force overlarge DTLs to be the same

Particle Filter Tracking

Inertial Tracking with Maps

至港大學 THE UNIVERSITY OF HONG KONC

Demos

60 m

Raw trace w/o map

50 m

Final trace w/ map

Map-based Correction

- No other measurements (WiFi RSS, BLE, etc) needed
- Only a plain image of indoor floorplan
 - Represented as a binary image indicating accessible and inaccessible locations
- PF-based design is easy to implement and efficient to calculate

A Step Towards "Indoor GPS"

Accuracy Decimeter-level (even in NLOS) Robust To environmental changes / people Installation A single unknown AP, easy to install Coverage One AP for 3,000 m², including NLOS Scalability Massive clients (like GPS) and buildings

Location: A long way to go...

Questions?

• Thank you!

